
ICT159 Lecture Notes Topic 1 – Page 1

Topic 1 –
Introduction and

Algorithms

THE BIG PICTURE
Why Programming?
Why should you learn about programming and computer
science?

 Programming helps develop problem-solving skills, in
particular, the ability to deal with complexity.

 Computer technology is pervasive. We live in the so-
called “Age of Information”. Moreover, the impact of the
computer on society is increasing.

 Programming skills can be applied in other areas.

 Most “programming” is done by non-computer scientists.
Customizing of tools is possible by those who understand
programming. This can range from programming
complicated queries on databases to running complex
simulations with spreadsheets.

 It's a fascinating challenge to teach the computer how to
solve hard problems.

ICT159 Lecture Notes Topic 1 – Page 2

 History of programming

 The original role of computers and programming was to
facilitate ‘number crunching’.

 However, perhaps the early computing pioneers failed to
appreciate was the flexibility of numbers.

 The very name computer suggests that they thought the
only applications for computers would be processing
numbers for the purpose of science and engineering.

 They did not recognize or appreciate the fact that numbers
can be used to encode just about any information one might
want to process.

 There are many examples where numbers are used to
represent information but the numeric values of the numbers
used have little significance and are not used for actual
computation:

 Post codes,

 Tax File numbers,

 Drivers license numbers, ...

 By associating a numeric value with each letter of the
alphabet (e.g., a=1, b=2, etc.) we can construct a numerical
encoding of any textual information.

 When a computer manipulates numbers of this sort, it is
really being used as a symbol or information processor
rather than a “computer”.

ICT159 Lecture Notes Topic 1 – Page 3

A Universal Information Processor
 It is the fact that just about any information can be encoded

using numbers that gives the computer the ability to be a
universal information processor.

 As a result, the encoding of information forms an important
part of all of computer science.

 Recognizing the power of numbers as symbols isn’t quite
enough to explain the amazing impact computers have had.

 Simple, hand-held calculators can process numbers
too, but they have not had the impact of computers.

 The computer’s other fundamental capability – the ability to
follow pre-supplied instruction or programs – provides the
rest of the explanation.

 The ability to change programs makes computers flexible:

 They can be adapted to new tasks without being
rebuilt.

 The ability to follow programs makes it possible to exploit
the speed of a computer.

 If the instructions could not be pre-supplied, the
computer would spend most of its time waiting for a
slow human to press the next control button.

ICT159 Lecture Notes Topic 1 – Page 4

Computer Science Definition
 Computer science provides the theoretical basis for most

programming techniques.

 So what is “computer science”, anyway?

 One simple definition that is sometimes used is:

Computer Science is the study of algorithms

 Specifically this entails:

1. Their formal and mathematical properties
 Studying the behaviour of algorithms to

determine whether they are correct and
efficient.

2. Their hardware realizations

 Designing and building computer systems that
are able to execute algorithms.

3. Their linguistic realizations

 Designing programming languages and
translating algorithms into these languages so
that they can be executed by the hardware.

4. Their applications

 Identifying important problems and designing
correct and efficient software packages to solve
these problems

So what exactly are algorithms then?

ICT159 Lecture Notes Topic 1 – Page 5

ALGORITHMS
Introduction
 Our main focus in this unit will be learning how to prepare

the instructions needed to ensure that a computer can
perform a particular task.

 The instructions presented to a computer are significantly
different from the sorts of instructions we might prepare for
another human being.

 Computers have no common sense or intuition:

 They can only perform a task if the instructions provided
are accurate and totally unambiguous.

 It must be possible to follow the instructions without any
sense or understanding of their actual purpose.

These instructions are called algorithms.

 The instructions in an algorithm must specify what to do
rather than what can or might be done.

 Thus, the “instructions” for a board game or a card game
would not be considered an algorithm.

 The instructions found in a cook book recipe are much more
similar to the instructions that must be included in an
algorithm.

ICT159 Lecture Notes Topic 1 – Page 6

Following instructions: People vs
Computers
 Our concern in this unit will primarily be to learn how to

write good algorithms (i.e. how to write good instructions).

 To appreciate why it might take as long as a semester to
accomplish this, consider:

 Humans, in general are very good at writing bad
instructions.

 Have you ever tried to assemble something complex
by following the manufacturer’s directions?

 However, luckily humans are generally very good at
following bad instructions.

 Example: A recipe whose first step called for preheating
the oven and whose second step called for refrigerating a
mixture of ingredients overnight. How many people
would be silly enough to leave the oven on overnight?

 Another example is the shampoo bottle instructions – see
later.

 Computers are essentially perfect at following instructions
exactly.

 A computer would definitely leave the oven on
overnight.

ICT159 Lecture Notes Topic 1 – Page 7

Formal Definition of an Algorithm
 Informally, an algorithm is an ordered sequence of

instructions that is guaranteed to solve a specific problem.

 Algorithms are important because if you can specify a

working algorithm for a problem then you can:
 Solve the problem
 Get a computer to solve any equivalent forms of that

problem automatically for you.

A formal definition of an algorithm is:

An Algorithm is a well-ordered collection of
unambiguous and effectively computable
operations that, when executed, produces a result
and halts in a finite amount of time.

 The key properties of an algorithm according to this
definition are highlighted and we will now go through them.

“...well-ordered...”

 The order of the operations that makes up an algorithm
must be correct (i.e., steps cannot be in an order which
produces the wrong result.)

 There is also often an efficiency aspect to the order of the
instructions – that is, one particular order is more efficient
than other orders even if they give the same correct result.

 It is also important that the first operation is clearly
indicated so that it is clear where the algorithm starts.

 Similarly its end must be clear, otherwise the algorithm
might carry on forever.

ICT159 Lecture Notes Topic 1 – Page 8

“...unambiguous...”
 So each instruction must also be clear in what it is that it

does
 E.g. Do part 1 or part 2

 The following is less ambiguous but is it completely

unambiguous?
if you are over 18 years of age do Part 1
 else do Part 2

 The following “Shampoo bottle” example is clearly
ambiguous:

STEP 1 Wet hair
STEP 2 Lather
STEP 3 Rinse
STEP 4 Repeat

 Repeat what?

 Steps 1 – 4? (This will go on forever.)
 Step 4? (Ditto but will be even less productive!)
 Steps 1 – 3? (This involves inefficiency because the

second time, the hair is already wet!)
 Steps 2 – 3? (This is correct but it takes human intuition

to realise it!)

ICT159 Lecture Notes Topic 1 – Page 9

“...effectively computable operations...”
 The operation must be within the capabilities of the

computer it will be executed on.
 For example, a = b + c is effectively computable only if

the computer can perform addition.
 There are also external limits on the sorts of computations

that can be performed.
 For example, the expression, a = b / c is only effectively

computable when c is not zero.

“...halts in a finite amount of time...”
 The algorithm must be capable of finding a result, that is

completing within a finite amount of time.
 Some algorithms may take a very long while to

complete for certain sets of data (hours, days, years,
centuries...) but they must ultimately be capable of
producing a result.

 Repeating Step 4 (“Repeat”) on the shampoo bottle
would represent what's called an “infinite loop” and
so the algorithm would not halt in a finite amount of
time.

ICT159 Lecture Notes Topic 1 – Page 10

Algorithms and Programming
Languages
 Learning to write good algorithms is a skill.

 While we can provide advice on how to go about it, there
are no set rules that will always enable you to produce a
good algorithm for a given task.

 Practice is really the only way to develop the needed skills.

 At the same time that you are learning this skill, we will also
be looking at programming languages you can use to
communicate your algorithms to a computer.

 In this unit we will be using a language called C.

 However, ultimately the algorithms you write must
potentially be able to be implemented in a variety of
different languages.

 This applies even to languages you don't yet know!

ICT159 Lecture Notes Topic 1 – Page 11

WHAT CAN ALGORITHMS DO?
There are only three things that an algorithm can do:

 Sequence

 Selection

 Iteration

All algorithms are made up of combinations of these three
structures and this is known as structure theorem.

Sequence
 Sequence relates to steps that are executed one after the other

with no variation in their order:
 Take keys out of pocket.
 Find correct key.
 Insert key into door lock.
 Turn key 90 degrees anti-clockwise.
 Remove key from lock.
 Return keys to pocket.
 Open unlocked door.

 In the sequential algorithms that we write for computers the

steps themselves can be of two different types.

 Computation steps involve performing some mathematical or

computational operation and then doing something with the
result of that computation.

 Input/Output steps involve either the getting of new data for

the program from some source external source (e.g., the user
typing at the keyboard) or the outputting of data from the
program (e.g., printing it to the screen).

ICT159 Lecture Notes Topic 1 – Page 12

Selection
 These involve making choices depending on some condition.
 These conditions always relate to the truth or falsity of some

expression.

 If the condition is true then the algorithm will perform a set

of sequential statements (as above).
 If the condition is false then it will perform a different set of

sequential statements.

if grade is greater than or equal to 50 then
 result = pass
else
 result = fail

 Selection is important because it allows the algorithm to

behave in different ways depending on these conditions.
 In the example above the algorithm will give different results

depending on whether the grade is a pass or fail.
 Note that the “result = pass” and “result = fail” are sequential

steps involving the assignment of a value or result.

ICT159 Lecture Notes Topic 1 – Page 13

Iteration
 These involve the repetition of certain steps, again according

to the truth or falsity of some condition.
 Iterative statements are very important since they take

advantage of the speed of computers and the fact that they
don't “get bored”.

 Computers can perform a boring and repetitive task over and
over again, very quickly.

 For example, a trivial searching algorithm might involve
iterating through a large collection of data very quickly.

 A person manually searching through that data would get
bored, plus they would do it much more slowly.

 If the collection of data is very big then it may not even be
feasible for a person to do it manually!

item = get first item
while item does not equal search_item AND items left
 item = get next item

if item = search_item
 print “Item found!”
else
 print “Item couldn't be found.”

 The above is a simple search algorithm.
 It gets the first item of data in some collection and then

iterates or “loops” until it finds the item being searched for.
 Once the loop has stopped then either the item has been

found or the search simply ran out of items.
 Note the use of sequence, selection and iteration required to

form the complete algorithm.

ICT159 Lecture Notes Topic 1 – Page 14

ALGORITHMIC

REPRESENTATION
 Programmers use different methods of writing down the

designs for their algorithms before they translate into the
code for a particular language.

 Although the rules for these representations aren't usually

strictly defined, they must be consistent within themselves.

 It is important when you write algorithms that you use some

of these representations and do so consistently.

 One technique is the use of flow charts which lay out the
flow of control through the program with different shapes to
indicate input, calculations, decisions and output.

 We will look at some examples of this later on.

ICT159 Lecture Notes Topic 1 – Page 15

Structured English
Others prefer a structured English approach in which the notes
describing how a program will work are organised into
indented lines that begin to resemble a program...

Here is a rudimentary algorithm for a “menu” program:

display menu

read keyboard input

depending on user selection do one of the

following:

 output the 'option 1' message (option 1)

 output the 'option 2' message (option 2)

 output the 'option 3' message (option 3)

 There are no real rules with structured English so long as it is
consistent and unambiguous.

 In some ways structured English is more suited to high level
algorithms and you will see this a lot in the examples for this
unit.

Pseudocode
 An alternative to structured English is pseudocode which is

written very much like a programming language with
minimal syntactic conventions.

 Pseudocode tends to be a little more precise and terse than

structured English which makes it a preferred technique for
writing low-level algorithms.

 Particularly early on in the unit, pseudocode is definitely

the recommended technique for you to use when writing
algorithms.

ICT159 Lecture Notes Topic 1 – Page 16

 The rules for pseudocode are rather loose, since it is to be
interpreted by humans, not computers.

 However, again consistency is important.

Example.

print "you have 3 choices"

print "enter a for option 1"

print "enter b for option 2"

print "enter c for option 3"

read response

if response == ‘a’

 print "You have selected option 1"

if response == ‘b’

 print "You have selected option 2"

if response == ‘c’

 print "You have selected option 3"

 Pseudocode is better than structured English when you first

begin to write algorithms because it makes it harder to write
ambiguous algorithms.

 However the exact style you use is up to you.

 The textbook uses several different styles (see the reading

schedule on the web site for notes about this) and these are
mostly fine.

 The style used predominantly in these lecture notes is also
fine.

 Just make sure whatever style you pick, you try to stick with
it – particularly within a single algorithm!

ICT159 Lecture Notes Topic 1 – Page 17

DEVELOPING AN ALGORITHMIC

SOLUTION
Problem Definition
 Often people take a brief look at a problem and immediately

work toward a solution.
 Unfortunately for most non-trivial problems this

approach is not likely to be successful.

 The Golden Rule here is to closely examine the problem to
make sure you understand what is being asked of you or
what it is that needs solving.

 If you get this stage wrong then every thing that follows will
also be wrong even though the program itself may run
without crashing.

Example: You're asked to write a simple GST calculator.

 What questions should you ask?

 Is this to take GST exclusive value and add the GST
or is it the other way around: a GST inclusive value
which you need to output the sell price and GST
component?

Other lower-level questions:

 Where will the inputs come from?
 Keyboard? Database? File? Network resource?

Another external device?

 Do the results need to be output in any particular form
(i.e., printed on an invoice)?

ICT159 Lecture Notes Topic 1 – Page 18

High-level Algorithm
 An algorithm is a series of steps by which a computer can

undertake the required processing to produce the required
output.

 However, for many advanced problems it is too difficult
to simply go straight from the problem statement to a
complete solution (algorithm).

 A more gradual approach is often called for.

 A good place to start is to write the high-level steps in the
algorithm.

 There are no methods used at this level i.e., no arithmetic
operations.

 In other words you simply the major steps to be performed
without giving details specifying how.

 However, your steps must still “add up”.

 In other words, you should be able to take each of the high
level steps you write and expand it into a collection of more
detailed steps ultimately representing a complete solution to
the problem.

 If you have to add in extra big steps that aren't part of the
high level algorithm then this suggests your high level
algorithm was incomplete.

 It is not always necessary to write a high-level algorithm.

 For example, in the first few topics of this unit the
problems we deal with are relatively simple and so a
high-level algorithm is not strictly necessary.

 However, if you think that writing one might help you
solve the problem then feel free to do so.

ICT159 Lecture Notes Topic 1 – Page 19

GST Example Cont.

 Get cost of product excluding GST.

 Calculate total cost including GST.

 Output the value to the user.

 Notice the three steps above

 Input

 Process

 Output

You will often see these three phases in simple algorithms.

Define Inputs & Outputs
 What form will the data be entered in?

 Data types (whole numbers, fractional numbers, single
characters, “strings” of characters together).

 Values like dollar and cents amounts could be read as a
single fractional number or as a pair of whole (integer)
numbers each representing the dollar and cents amounts.

 Data obtained from the keyboard, from a file, from a
database, across the network?

 How should the output be displayed?

 Does the data type require special formatting to output
correctly?

 Adding in a dollar sign at the front and printing two
decimal places for currency values.

 Appending a percent sign for percentages.

 Where should the output go? (To the screen, a file, a
database, across the network...)

ICT159 Lecture Notes Topic 1 – Page 20

Create a Test Data Set
 Here we need to consider what results our program should

be able to provide.

 For most problems this involves being able to do some
calculations to verify the sorts of results the program should
obtain for certain data.

 Note that this implicitly requires a basic understanding of
how to solve the problem but for nearly all problems this is
not an issue.

Example Cont.

 We need to multiply the ex-GST price by 1.1 to calculate
the new price including GST.

 Even though this is a critical part of the solution, it is a
simple calculation to make.

 This is important because it allows us to do test calculations
to see what sort of results the program should produce.

 This process verifies our algorithm as correct and is called
desk checking.

 The following table represents some possible values that
you can test in a preliminary way to understand the
behaviour of the algorithm.

 Note that these are not necessarily ideal test values!

Ex-GST
Price

Expected Result
Inclusive GST Price

0 0
10 11
25 27.5

20000 22000
-5 -5.5

21.95 24.145

ICT159 Lecture Notes Topic 1 – Page 21

 Also, the ones highlighted in red are those that reveal
potential issues which would need to be dealt with to
provide a complete and reliable algorithm.

Create a Low-level Algorithm
 Here we put the individual steps that a computer will require

to process our input to the desired output.

 Here we take our high-level algorithm and break each step
down, or decompose it.

 This method is called top-down design.

 It allows us to look at the big picture first then break the
problem up into smaller and smaller parts.

 For complex and difficult problems this makes producing a
complete solution much easier.

 Note this example illustrates the process but doesn’t reflect
how you should represent each step.

Example Cont.

 Get cost of product excluding GST.
 Print “Enter price of product ex-GST: ”
 Read user input into price

 Calculate total cost including GST.
 if price < 0 then print “Invalid input!” and exit
 total = price * 1.1

 Output the value to the user.
 total = total rounded to 2 decimal places
 print “Total price is: $”, total

ICT159 Lecture Notes Topic 1 – Page 22

Code the Algorithm
 It is at this point where we take a programming language,

capable of carrying out our desired task and use it to
implement our algorithm.

 The major task here is to convert the algorithm into the
correct syntax of the chosen language.

 The syntax of a language is the collection of rules for how a
particular operation is expressed and written in that
language.

 There are often many syntactical similarities between
languages, for example C, C++ and Java are very similar in
many ways.

 So even though we will cover only C in this unit, by
learning it you will find it very easy to learn the syntax of
other languages.

We will deal with the basic components of a program in a later
topic.

ICT159 Lecture Notes Topic 1 – Page 23

Apply the Test Data
 Now we will take the test data set that we created earlier in

this process and input it into our program and check that it
gives the expected results.

 This allows us to confirm that our implemented program
matches the algorithm we designed (and desk-checked)
previously.

 If it does produce expected results then you know that your
program matches your algorithm although it may not be
completely bug free.

 Test data sets should be created with great care: if the test
data does not properly and comprehensively test the
correctness of the algorithm then there may be significant
bugs that remain undiscovered.

 Selection of test data is therefore critical!

 For this reason, a significant amount of marks are allocated
to it in the assignments for this unit!

 How to correctly select test data will be discussed later in
the unit.

ICT159 Lecture Notes Topic 1 – Page 24

SUMMARY
 Computers are powerful devices because they can not just

perform computations but also because of their ability to
encode information into numbers and to follow specified
instructions.

 Computer science may be described as the study of

algorithms.
 These are ordered sequences of instructions to solve a given

problem.
 Computer scientists develop algorithms to solve problems

and then convert these into programs able to be run on a
computer.

 Algorithms can be made up of sequential steps, selective

structures and iterative structures.
 They can be represented in the form of structured English

and pseudocode.

 When developing an algorithm it is often best to start with

the general or “high-level” steps then refine each of these by
specifying the lower-level individual steps that make these
up.

 After coding it is important to apply test data to the program

to ensure that it works correctly.

